Colossal black holes locked in cosmic dance at heart of galaxy

Professor Grainge has been involved in this work since 2006 when he helped with re-commissioning the OVRO-40m telescope, which has provided much of the radio data in the paper. “Since then I have been involved with a programme of using the OVRO-40m to monitor the radio flux of ~1500 blazar candidates (a blazar is a particular type of active galactic nucleus, AGN) every 3 or so days. One of these sources turned out to have this interesting periodic variability which makes it a good candidate for a binary supermassive black hole system.” said Grainge.

“When we realised that the peaks and troughs of the light curve detected from recent times matched the peaks and troughs observed between 1975 and 1983, we knew something very special was going on,” says Sandra O’Neill, lead author of the new study and an undergraduate student at Caltech.

Professor Tony Readhead from Caltech, who leads the collaboration, compares the system of the jet moving back and forth to a ticking clock, where each cycle, or period, of the sine wave corresponds to the two-year orbit of the black holes (the observed cycle is actually five years due to light being stretched by the expansion of the universe). “The clock kept ticking,” he says, “The stability of the period over this 20-year gap strongly suggests that this blazar harbours not one supermassive black hole, but two supermassive black holes orbiting each other.”

Ripples in Space and Time

Most, if not all, galaxies possess monstrous black holes at their cores, including our own Milky Way galaxy. When galaxies merge, their black holes “sink” to the middle of the newly formed galaxy and eventually join together to form an even more massive black hole. As the black holes spiral toward each other, they increasingly disturb the fabric of space and time, sending out gravitational waves, which were first predicted by Albert Einstein more than 100 years ago.

The National Science Foundation’s LIGO (Laser Interferometer Gravitational-Wave Observatory), which is managed jointly by Caltech and MIT, detects gravitational waves from pairs of black holes up to dozens of times the mass of our sun. However, the supermassive black holes at the centres of galaxies have masses that are millions to billions of times that of our sun, and give off lower frequencies of gravitational waves than what LIGO detects.

In the future, pulsar timing arrays—which consist of an array of pulsing, dead stars precisely monitored by radio telescopes—should be able to detect the gravitational waves from supermassive black holes of this heft (the upcoming LISA mission would detect merging black holes from a thousand to ten million times the mass of the sun). So far, no gravitational waves have been registered from any of these heavier sources but PKS 2131-021 provides the most promising target yet.

Source link

Show More